
Parallel Design Patterns

Michael Herwig

German Research School for Simulation Sciences GmbH
Laboratory for Parallel Programming

michael.herwig@rwth-aachen.de

Supervisor: Zia Ul Huda (z.ul-huda@grs-sim.de)

Abstract: While multicore architectures get more distributed in modern computers, taking
advantage of them gets more and more important. This paper introduces design patterns integrat-
ing structured concurrency into modern software. Therefore environment and suitable patterns get
categorized. Further several patterns get presented with focus on their underlying domain. Fol-
lowing these patterns get compared against each other and in combination for different cases of
application.

1 Introduction

In recent years multicore architectures took over the cpu market. Nearly every modern cpu consists out of
multiple units of execution. This is a consequence of the heat problem from increasing frequency[4, p. 23].

To take advantage of this new environment programs need to be overworked and code design changes.
This opens a wide variety of new design patterns challenging the balance between flexibility, efficiency and
simplicity.

• flexibility

System environments change in time. A flexible solution is portable and reusable. This requires a high
modularity in code design. This allows advancing with upcoming trends and testing multiple environ-
ments with less effort.

• efficency

While the count of units of execution on modern CPUs increases it is unforeseeable to consider a lim-
itation. Despite todays CPUs normally exists of four to sixteen units of execution it is presumable that
this number increases expeditious in the next time. A good design pattern covers this progression and
scales with the underlying hardware otherwise it cannot be denoted as efficient since it does not exploit
all resources.

• simplicity

Often code optimization and parallelization results in more complex relationships and code design. Nev-
ertheless it needs to be simple enough to be maintained and debugged.

Unfortunately these three mutual exclude each other. Flexibility comes with the price of efficiency and vise
versa. The key for a good modern parallel design is to find the best suitable balance for the environment. The
following sections will address some techniques to overcome this challenge.



2 CHARACTERISTICS

2 Characteristics

Finding a suitable design pattern is a difficult task and more an iterative process then a clear decision. Every
approach got its own strength and weaknesses and choosing one results always in trade offs. There is no holy
grail of patterns that fits best and often it is not even possible to estimate the real effort. Design decisions get
evaluated after implementation and may be altered. This makes comparing different patterns an elaborate task.

This chapter gives a brief explanation and overview of some characteristics used to compare and categorize
the design patterns presented later. The key is to distinguish between hardware and software dependencies.
Some patterns may fit better on special memory layouts while others requires some kind of data sharing. Addi-
tionally patterns run faster with different implementations on varying platforms. This opens a zoo of possible
comparisons and categorizations. Since this paper gives a shorthand and more abstract overview everything
cannot be covered. Therefore we will split all patterns into two subcategories and treat them as far as possible
separately.

2.1 Algorithm Structure Design Patterns

This category includes all patterns that takes a more administrative and abstract part in the implementation and
are mostly platform independent. Their purpose is to organize concurrency independent from the underlying
realization. They are distinguished into classes by the way they organize the commanding part of concurrency
found in earlier development stages. This results in three different classes that are shortly explained in the
following itemization.

• organized by task

The domain is dominated by different concurrent tasks. This does not mean data dependencies are
excluded furthermore to overlook as a result of their magnitude. Tasks are braked down in a collection
of independent subtasks and executed in parallel.

• organized by data decomposition

The same task is repeated plenty of times on different sets of data that may be subsets of huge data
blocks. Patterns in this class parallelize execution by organizing the availability of data to different units
of execution performing the same task.

• organized by flow of data

Data is commonly shared among tasks and different tasks depend on their ordering of execution. Tasks
get scheduled statically or dynamically to different units of execution, based on their internal dependen-
cies and workload.

With this classification it is auxiliary to create a decision tree for choosing the right pattern like in figure
1. It is uncommon to find one best suitable pattern but it gives a great overview and introductory overview of
possibilities. In practice multiple patterns from different spaces will be considered and may be compound to
more complex and nested solutions.

While algorithm structure patterns aims to encapsulate organization from software structure it is worth ig-
noring specific platform features and implementation characteristics. Flexibility always comes with the costs of
efficiency and vise versa. Choosing the right algorithm means choosing an appropriate balance between level

2



2 CHARACTERISTICS

Start

Organize By Data
DecomopositionOrganize By Task Organize By

Flow of Data

Linear Recursive

Task Par-
allelism

Divide and
Conquer

Linear Recursive

Geometric
Decom-
position

Recursive
Data

Regular Irregular

Pipeline Event-Based
Coordination

Figure 1: decision tree for algorithm structure design patterns, taken from [1, figure 4.2]

of abstraction and exploiting the underlying architecture. This leads to a mutual dependence on code structure
and implementation details.

2.2 Supporting Structure Design Patterns

Patterns of this category helps parallelization by structuring and encapsulating source code to be compatible to
the chosen algorithm patterns without leaking implementation detail.

Similar to algorithm structure design patterns the supporting structure design patterns are partitioned into
two separate classes.

• program structures

This classifies patterns to organize code structure and abstracts their execution to embed them into algo-
rithm structure design patterns.

• data structures

Managing shared data requires fine granulated and suitable data structures to maintain data dependencies
and consistency. A pattern in this partition addresses the problem of sharing data structures.

In theory this partitioning of algorithm and supporting design patterns is a clean solution for seperating
organization from implementation but in practice they get nest together. Some patterns from these spaces work
better together then other while other patterns are better supported in different environments. Even various
programming language can have different support and performance for suitable patterns.

3



3 DIVIDE-AND-CONQUER PATTERN

3 Divide-And-Conquer Pattern

The divide and conquer pattern is a algorithm structure design pattern and is classified as organized by task.
Therefore it splits problems into smaller sub problems that can be solved in parallel.

3.1 Amplification

Problems can often be divided in several sub problems that can be solved independently. Their solutions are
afterwards merged to a solution for the primal problem. Thereby the primal problem depends on the solutions
of its subtasks and this limits the number of concurrent tasks as shown in following figure.

problem

split

subproblem

split

subproblem

split

sub problemsub problemsub problemsub problem

sub solutionsub solutionsub solutionsub solution

subsolution

merge

subsolution

merge

solution

merge

sequential

up to 2-way concurrency

up to 4-way concurrency

up to 2-way concurrency

sequential

solvesolvesolvesolve

Figure 2: exemplary divide and conquer workflow[1, figure 4.5]

While the depth of divided problems determine the number of concurrent tasks it is important to find a
suitable depth. Choosing an oversized depth results in undersized tasks and an overhead of merge and split
operations, especially if sub problems are generated dynamically. Therefore usually some kind of limitation or
threshold is implemented to conclude whether a split operation is worth it.

Equally important is the mapping from emerging tasks to processing elements. A simple approach would be
to create a unit of execution for every available processing element and then mapping every deep most subtask
to a busy unit of execution until everything is solved. Nevertheless this can cause context switches. If a higher
order task executes on a different processing element then its subtask at least the data the subtask depends
on has to be transmitted, because usually the data is already available for the parent task. To overcome this
problem sets of high order tasks and their subtasks are mapped to units of execution. Tasks out of this set are
then preferred for the respective unit of execution. This guarantees the availability of data and tasks are only
moved to other processing elementif they are busy.

4



4 MAP PATTERN

3.2 Fork-Join Pattern

One related pattern to the divide and conquer pattern is the fork-join pattern. Due to its strong relationship this
section gives a brief overview of this pattern and its impact.

The fork-join pattern is a supporting structure design pattern. It

C()B()

fork

execution

join

Figure 3: sequential grouping of the
fork-join pattern[2, figure
8.1]

organizes code by grouping them into three stages shown in figure 3.
The fork stages dynamically generate concurrent tasks. The execu-
tion stages recursively results in a new fork or process a data subset.
The join stage indicates the termination of the subroutine. Unlike
the divide and conquer pattern this pattern addresses implementation
and fork and join has no performance leakage. The merge and split
operation can therefore be considered as separate tasks. The divide
and conquer pattern is usually implemented via the fork-join pattern
and mapping rules from tasks to processing elements applies from the
divide and conquer pattern.

4 Map Pattern

The map pattern is a algorithm structure design pattern designed to work efficiently with sets of elemental
functions, further called instructions, that operates on distinct data hence it is classified to be organized by data.

4.1 Amplification

The map pattern itself does not specify

(a) serial

vectorized data
data element
instruction
data flow

(b) parallel

Figure 4: Serial and parallel execution of map pattern. taken
from[2, fig. 4.1]

the way instructions are executed. There-
fore they can run in parallel or in sequence
as shown in figure 4.

Instructions are not permitted to com-
municate with each other or share data
that is not read only. In return data can be
vectorized which enables memory align-
ment, smaller cache lines, faster caching[4,
section 1.3.1] and radical reduces the oc-
currence of false sharing. Additionally
this simplifies the pattern and makes it enor-
mously flexible.

Various combinations with other pat-
terns exists to manage instruction execu-
tion and data flow. To support full nesting
of patterns without dropping the perfor-
mance boost from vectorization it is very important to guarantee a serial control flow and data access[2, p. 122].
Otherwise, depending on underlying patterns, execution will raise in race conditions, cache misses and other
unpredictable issues.

5



4 MAP PATTERN

While it is permitted to access shared data that is not packed into the vectorized data for read only purpose it
is not unusual to store indices to oblique refer to data with random access[2, p.124]. The pattern itself does not
forbid varying instructions and choosing instructions may rely on data read at execution.

Notice that this will give some flexibility in execution but at the price of performance leakage to instruction
and data cache misses. In consequence it is more common to keep the instruction set small and reference data
not indirect. In fact sometimes it is more performant to store redundant data that does not alter repetitive into
the vectorized data set to improve performance.
4.2 Sequence of Maps

Sometimes multiple instructions have to be executed in sequence because every next instruction attaches to the
processed data from the previous instruction. If you optimize every instruction step of your algorithm with the
map pattern this leads to a sequence of maps. While every map does not know each other you get synchro-
nizations between every instruction step. Otherwise the next map could not be sure about the availability of
its data. This result in less cpu workload because some instructions could already be executed while waiting
for the most slow execution of the previous instruction step, without the need of its processing data. To over-
come this problem you need to either reduce synchronization points or encapsulate data blocks that need to be
synchronized.

(a) no optimization (b) code fusion (c) cache fusion

Figure 5: comparison of optimization models for sequences of maps. Legend applies from figure 4[2, figure
4.2 & 4.3].

code fusion

Instruction chains get recomposed calling each other in sequence with the processed data. This does not mean
that the instruction is executed in the same unit of execution but it is common to do so because of the availability
of data what disables latency and spares bandwidth. Nevertheless fusing to much instructions results in larger
code size and may be to large to hold in cache what in turn slows down computation[4, p.81].

cache fusion

It is not always possible to fuse code or following instruction steps depends on multiple preprocessed data
blocks. In this case it is not possible to fuse code, but to encapsulate data blocks that need to be synchronized
for the following instruction. This does not overcome the problem entirely but reduces the count of instructions
that waits for completion of other tasks.

6



5 PIPELINE PATTERN

4.3 Organize Data Flow

In the previous section data flow was straight forward. This is not always the case. Some instructions may
produce multiple data sets that can further be processed in parallel or their data flow gets invalidated and
discarded. Therefore the data structure needs to be reorganized.

pack

Some data flows do not need to proceed any more and get discarded. This would result to gaps in the vectorized
data set. The pack pattern moves further used data blocks to align them in memory.

unpack

The unpack pattern is the converse part of the pack pattern. It moves data blocks to fill in gaps into the vectorized
data. These gaps can then be used to bind data from external sources or unrelated tasks for example.

5 Pipeline Pattern

The map pattern assumes that all data is available and the task can run in parallel on different sets of data
because they not influence each other. Unfortunately this does not fit every domain. Data may get streamed
or needs to be processed from pervious stages and it is not worth waiting for it. The map pattern tries to
overcome this problem with cache fusion but i.e. online algorithms requires to change computational behavior
from previous processed data by definition. With the map pattern this would lead to serial execution. The
pipeline pattern solves this problem by encapsulating parallel stages in execution and organizing a regular flow
of data.

First tasks get divided into a sequence of stages, depending on their influence to concurrent tasks of the same
type[2, p. 254]. A suitable segmentation is itemized below.

• parallel stage is a subtask that can run in parallel without the requirement to synchronize with other
instances caused by shared data.

• serial out of order stage is a subtask that influences the execution of parallel instances without require-
ments to ordering.

• serial in order stage is like the serial out of order stage but with ordering constraints.

Dividing a task into these stages leads to an execution schema like in figure 6. If the first serial stage finished
the state is updated and another instance can start working on it although the primary stage is not yet finished
but in parallel stage. This leads to a linear data flow from serial stages through every concurrent execution of
the task. The stages itself are not permitted to be serial. Further themselves can be implemented by other design
patterns to run in parallel.

While it is possible to keep synchronization points as small as possible with such segmentation it also im-
proves maintainability by separating the task into independent chunks. Nevertheless this pattern gives a great
flexibility at the price of ignoring hardware environment and increasing complexity and it is worth considering
dataflow optimization and error handling[1, p.107-109] due to data locality and livelocks.

7



6 EVENT-BASED COORDINATION PATTERN

input data

serial stage with shared state

parallel stage

serial stage with shared state

output data

Figure 6: Illustration of a pipeline with two serial stages, taken from [2, figure 9.1 & 9.2]. On the left hand
side is the pipeline in a single execution environment showing the data flow dependencies. On
the right hand side the concurrent execution model of the task with five different data items.

6 Event-Based Coordination Pattern

Sometimes it is not possible to design
initialization

in computation receive event

process event

send eventsfinalization

no

yes

Figure 7: flow chart of task execution in the event base coordi-
nation pattern

program execution without irregular data
flow. Hence it is a algorithm structure
design pattern classified as organized by
flow of data. Subtasks may invoke higher
order tasks, depending on their data. This
creates circular constraints that cannot be
solved by static ordered execution sched-
ules. In fact this would lead to a deadlock
whenever a subtask invokes a higher or-
der task whose execution again results in
execution of the subtask. The event based
coordination addresses this problem and
introduces a dynamic scheduling mecha-
nism.

In the event based coordination pattern
tasks do not get invoked directly but through
events. An event is a pattern specific struc-

ture that holds two tasks. The creator and the receiver what keeps the data flow transparent and defines ordering

8



7 SHARED DATA PATTERN

constraints. Additionally events mostly hold some environment specific data to customize execution. Calling a
subtask then gets overloaded to creating an event that abstracts the call. Created events gets passed to an inter-
face, that manages passing them to the receiving task, if the current task can not proceed any further. This leads
to a uniform structure of execution for every task as shown in figure 7. While tasks execute concurrently events
get send and received concurrent. This requires a safe data structure to manage the events asynchronously like
a shared queue, see section 7 for more information about concurrent data structures.
event ordering

The strait of this pattern is the coordination of the events. While constraints are stored into the event structure it
is sometimes not possible to choose the right ordering and wrong ordering sometimes results in wrong outcome.
This happens if some different tasks execute a common subtask that implies changes to data both tasks rely on.
If both subtasks get executed before returning to one of the parent tasks, this parent task may accidentally
assumes a wrong state. This means that both events were ordered before the parent task. The corresponding
event is then called as out-of-order event.

Whether out-of-order is a problem for the execution model depends on the environment. Nevertheless if
out of order execution is problematic the chosen ordering strategy apportions in 2 categories optimistic and
pessimistic.

Optimistic ordering is an approach that orders everything normally until a critical out-of-order execution
happens. At this point the corresponding changes of the out-of-order event execution get led back. This
rollback implies that every event execution generated by the out-of-order event and so forth need to be led
back. Nevertheless this requires a mechanism to rollback the execution of events and this is not always provided
especially if execution invokes external routines or is invoked by an external routine.

Pessimistic ordering is used if rollbacks are not provided or not feasible due to their performance leakage.
In this case events only get ordered if it is insured to be linear and no out-of-order event can occur. This leads to
high latency due to the waiting time to ensure the ordering and requires more communication what again costs
throughput.

7 Shared Data Pattern

7.1 Motivation

Most of the presented patterns assume that data is processed independently of other tasks. This makes it easy
to replicate or separate these data to not interfere with other tasks working on these like the map pattern with
cache fusion. The shared data pattern is applicable if data need to be consistent over several tasks. Imagine a
queue of working items where every task wants to grab one of it if it is finished. In this case you need to ensure
that two tasks do not get the same working item and updating the queue from multiple units of execution do not
break the internal structure or make it inconsistent.

In general if one data item is processed by more then one concurrent task and one of these task modifies this
data in a way that another concurrent computation needs to be updated the shared data pattern is expedient.

9



7 SHARED DATA PATTERN

7.2 Solutions

While the shared data pattern is more a hyponym for a collection of techniques this section shows some of
them. These should not be read as a fixed set of solutions, more like a set of patches that fits best in related
variations.

concurrent data structures

Developing concurrent data structures is a huge topic itself. The key is to keep your data structures as simple as
possible without unacceptable performance leakage. Simplicity not only keeps your developing time low but
also ease debugging and understanding the process. Therefore starting with an abstract interface and designing
a simple implementation is a good point for custom domain suited optimizations and can be used later as con-
sistency oracle1 for testing[3, p.305]. This ensures correctness of more complex concurrency-control protocols
implementations.

one at a time execution

This approach uses mutual exclusions to ensure that only one unit of execution can execute an operation, out of
a set, at a time. These operations normally share a critical resource like a buffer or more complex data structure
and can be considered as critical sections. This will always force every execution of these operations to be
serial. Typically mutex, semaphores or critical sections, if provided, implement this. One at a time execution
provides an easy and feasible solution to implement and test concurrent data structures on consistency with
serial results. Therefore the abstract data interface is implemented as a wrapper declaring all operations as
critical sections and forward them to a serial standard implementation. Take to account that this is intended to
be slow and interlaced virtual calls leads to nested critical sections hence probably nested locks that should be
avoided for deadlock safety reasons[3, p.49].

read/write-lock

As mentioned in section motivation this problem of shared data only occurs if a task needs to write to a shared
set of data that leads to computational update for at least one concurrent task. In a domain where several tasks
exists that only read from such data and depends on its consistency during their execution it is usually more
performant to lock write access. This enables to run these tasks in parallel since they all only read the shared
data hence they do not interfere each other and prevents cache ping pong[3, p.235-238]. This gets implemented
via read/write-locks. Think of them as a special kind of mutex that be can locked for read or write access. While
write access it is granted that no one else can obtain access to read or write. Yet read access can be obtained
multiple times and stores an internal counter to secure that write access is only granted if no read access is
currently omitted. Certainly this can lead to a continuous read and deadlock tasks that acquire write access, as
a consequence more complex implementations are usually required.

1consistency oracle: generates results that are assumed to be right and compares them with the results of an implementation that needs
to be tested[5]

10



8 CONCLUSION

8 Conclusion

Multiple algorithm structure design patterns and supporting structure design patterns were introduced to show
their application and usage in modern multicore software development. Since this paper just give a brief
overview and can not cover everything in detail it focused more on an abstract point of view.

Therefore some basic related patterns were explained and how they are used in combination to ensure flexi-
bility, efficiency and simplicity. This resulted in multiple dependencies between software design and hardware
architecture. For that reason performance challenging dependencies were shown and how to consider these in
code structure and design evaluation for specific system environments.

Nevertheless parallelization comes with effort in development and sometimes it is not worthwhile. Unfor-
tunately effort and value cannot always be estimated in advance. This leads to an iterative process of paral-
lelization that adjusts software for new challenges and hardware dependencies. More then once this shows the
importance of flexibility and simplicity despite its cost of efficiency.

While parallelization increased dramatically in the last years this field becomes more and more important
in modern software design. This especially applies to distributed environments, like cloud services and high
performance computing cluster. In industry more and more companies challenges via performance in industrial
and multimedia applications. Additionally web development grows more and more and programming in parallel
results in programming asynchronously. There a plenty more application areas but this reaches to show the
importance of multicore environments, parallel patterns and it is worth knowing it.

11



Glossary

Glossary

cache miss continues aligned memory gets prebuffered on accessed memory addresses. A cache miss occurs
if a requested memory block is not prebuffered. This results in a loading routine. 5, 6

cache ping-pong multiple threads are executing concurrently on different processors and reading the same
data [...] if one thread modifies the data, this change then has to propagate to the cache of other cores.[3,
p.235]. 10, 12

deadlock each thread is waiting for the other. Neither can proceed because it is waiting for the other to release
its mutex.[3, p47]. 8, 10, 12

false sharing small data items get aligned in cache lines and shared to multiple threads. Changing these items
results in cache ping pong[3, p.237]. 5

livelock similar to deadlock in that one thread is waiting for another, which is in turn waiting for the first. The
key differnce here is that the wait is not a blocking wait but an active checking loop.[3, p.301]. 7

memory alignment processor architecture always access a chunk of data, usually 64bit. vectorized memory
gets aligned to prevent spacing between data with a word size that does not fit the chunk size.. 5

processing element a generic term for hardware element that executes a stream of instructions[1, p. 17]. 4,
5

race condition the outcome depends on the relative ordering of execution of operations on two or more units
of execution[3, p. 36]. 5

unit of execution a thread is the fundamental unit of execution in modern operating systems and is associated
to a process.[1, p.16]. 1, 4, 6, 9, 10, 12

12



References

References

[1] Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill: Patterns for Parallel Programming.
Addison-Wesley, Boston, sixth printing, June 2010.

[2] Michael McCool, Arch D. Robison, James Reinders: Structured Parallel Programming - Patterns for
Efficient Computation. Morgan Kaufmann, Walthamm, digital print 2012.

[3] Anthony Williams: C++ Concurrency In Action. Manning, Shelter Island, first printing, 2012.

[4] Georg Hager, Gerhard Wellein: Introduction to High Performance Computing for Scientists and Engineers
. CRC Press, Boca Raton, first printing, June 2010.

[5] wikipedia: Oracle (software testing). http://en.wikipedia.org/wiki/Oracle_(software_

testing)

13


