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This paper summarizes the proceeding of the so called Excluded Grid Theorem of
Robertson and Seymour. It states the existence of a bound of treewidth for a graph
to not contain a grid of specified size as a minor. While recent research in this topic
improved far forward we focus on a recent paper from Julia Chuzhoy[4] showing a new
improved and simplified proof, work out key concepts and techniques used by her and
other referenced publications.

1 Introduction

Global assumptions about graphs is a wide field of research in graph theory. One way to express
those are graph properties. Using these it is possible to classify groups of graphs and therefore
adapt to those customizing algorithms or argue about possible relations.

Definition 1 (Graph Property). If H is any set or class of graphs, then the class Forb�(H) :=
{G|G 6� H : H ∈ H} of all graphs without a minor in H is a graph property, here expressed with
forbidden minors.[5, pp. 263]

In this paper we focus on a classification of linkedness within a graph specified by a grid.

Theorem 1 (Excluded Grid Theorem). There is some function f : Z 7→ Z+, such that for any
integer g ≥ 1, any graph of treewidth at least f(g) contains the (g × g)-grid as a minor.[7]

1986 Robertson & Seymour published an article including the Excluded Grid Theorem[7], shown in
theorem 1. Hence it is possible to express a class of graphs with bounded tree-width of f(g) using
a graph property by definition 1 and choosing H = {(g × g)} respectively. This is in turn used to
optimize algorithms like it is done in research for the disjoint paths problem from Neil Robertson
and Paul D Seymour[9].
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While research in tree-width continues, finding a closer bound for f(g) gets more important.
2014 Chekuri and Chuzhoy[2] were first providing a polynomial upper bound for f with f(g) =
O (g98poly log g). Further improvements were published by Julia Chuzhoy[4] to f(g) = O (g36poly log g)
in year 2015. In addition she simplified the proof introducing a new iterative algorithm to obtain
a so called path-of-sets system, which was already used by Chekuri and Chuzhoy[2] before. This
system again is used to gain a minor grid as shown by Chandra Chekuri and Julia Chuzhoy in [1]
and is closely related to a structure used by Alexander Leaf and Paul Seymour in [6] called grill.

This paper will mostly refer to Julia Chuzhoy’s[4] improved and simplified version of proofing the
Excluded Grid Theorem. In order to refer to previous work skipping explanations the following
sections will give a more complete overview about techniques and shared notation used within the
proof as a whole taken from multiple publications. Thus explanations will be more informal and
present the key aspects in a more informal and intuitive way at the cost of depth and integrity. As
a result this paper is a short introduction and overview to the Excluded Grid Theorem and deeper
understanding can be obtained from the referenced publications.

2 Preliminaries

2.1 Basic Notation

Path

A path is a sequence of edges Pk = ({v1, w1}, . . . , {vk, wk}) with wi = vi+1 for all 1 ≤ i < k,
{v1, w1}, {vk, wk} are called endpoints and all others inner vertex of Pk. For convenience a path is
written as a set of edges and their ordering is assumed to be well defined. V (P ) :=

⋃
e∈P e is denoted

as the vertices of P and E(P ) :=
⋃
e∈P{e} as the edges of P , accordingly E(P) =

⋃
P∈P E(P ) and

V (P) =
⋃
p∈P V (P ) for a set of paths P . For every path P , P is called internally disjoint from

a set of vertices V0 ⊆ V if V (P ) ∩ V0 = ∅ and internally disjoint from any other path P ′ if every
v0 ∈ V (P ) ∩ V (P ′) is an endpoint of both paths or furthermore node disjoint if V (P ) ∩ V (P ′) = ∅.
Let P be any set of paths in G, ζ : P 7→ N, ζ(P) := maxP0∈P maxe0∈P0{

∑
P∈P |e0 ∩ P |} is the

maximum number of edges shared by all paths and ηP = ζ(P) is named the caused edge-congestion
of P .

Flow

For any two subsets S, T ⊆ V of vertices a set of paths F : S  T (short F ) is called a flow from
source S to tear T if for every vertex so ∈ S exists a unique path Po ∈ F containing s0 as endpoint

in S and any endpoint t0 ∈ T . If all endpoints of all paths in F are distinct F is written F : S
k:k
 T

with k = |F |, for k = |S| = |T |, F can be written as F : S
1:1
 T . Additionally F can be written as

F : S  η T respectively F : S
1:1
 η T with η is the maximum edge-congestion F can cause. A flow

F is node disjoint if all paths within F are node disjoint. Notice that for every node disjoint flow
F the caused edge-congestion is ηF = 1.

2



2.2 Minor

Let G1, G2 be undirected graphs. G1 is a minor of G2, written G1 � G2, if G1 can be obtained by
a sequence of predefined operations, listed below, applied to G2.

α : G × E 7→ G, α((V,E), {v, w}) := (V \ {w}, E \ {{u,w}|u ∈ V } ∪ {{u, v}|{u,w} ∈ E ∧ u 6= v})
β : G × E 7→ G, β((V,E), e) := (V,E \ e)
γ : G × V 7→ G, γ((V,E), v) := (V \ {v}, E)

α is called edge contraction, β edge deletion and γ node deletion. Notice the order of performed
operation does not effect the resulting graph. Figure 1 shows an example of a minor. Additionally
we define

α : G × E 7→ G, α(G,E) := α(α(G, e0), E \ {e0}), for any e ∈ E if E 6= ∅ else α(G,E) := G

α : G × P 7→ G, α(G,P ) := α(G,E(P ))

the contraction of sets of edges and the contraction of paths.

G2

v w

e 1

e 2

β(β(α(G2, {v, w}), e1), e2) G1

Figure 1: An example of a minor G1 � G2. The sequence of operations (α, β, β) to obtain G1 from
G2 is illustrated in the middle. The dashed lines show an edge deletion and the dotted
line an edge contraction.

2.3 Linkedness

Linkedness measures connectivity within a graph in context of edges or nodes. While node connec-
tivity is strongly related to treewidth it is often more practical to work with edge connectivity. We
will start explaining the linkedness of edges and later derive node-linkedness from edge-linkedness
under certain circumstances.

Definition 2 (α-well-linkedness). Let G = (V,E) be any undirected graph and V0 ⊆ V a subset of
vertices. We call V0 α-well-linked if |E(A,B)| ≥ α ∗min{|A ∩ V0|, |B ∩ V0|} holds for any partition
(A,B) of G and 0 < α ≤ 1.[1, Definition 2.1]

Definition 2 uses edge-cuts and hence defines edge-well-linkedness, using flows 3 expresses an alter-
native definition.
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Definition 3. Let G = (V,E) be any undirected graph and V0 ⊆ V a subset of vertices. We call V0

α-well-linked if for all subsets V1, V2 ⊆ V0 with |V1| = |V2| and V1∩V2 = ∅ exists a Flow F : V1
1:1
 V2

in G.[4, Definition 2.1]

In addition a set of vertices V0 ∈ V is (k′, α)-well-linked if definition 3 holds for all subsets with
cardinality at most k′ respectively |E(A,B)| ≥ α ∗min{|A ∩ V0|, |B ∩ V0|, k} for definition 2.

Definition 4 (node-well-linkedness). For any undirected graph G = (V,E), let V0 ⊆ V a subset
of vertices. We call V0 node-well-linked in G if for any two subsets V1, V2 ⊆ V0 with V0 = V1 and

V0 ∩ V1 = ∅ exists a node disjoint flow F : V1
1:1
 1 V2 in G.

To derive node-well-linkedness from edge-well-linkedness we assume that for a given undirected
graph G = (V,E) the maximum degree of all vertices is bounded by maxv∈V {δ(v)} ≤ 3. This infers

for any unequal two paths P1, P2 ∈ F : S
1:1
 1 T in G every node v ∈ V (P1) ∩ V (P2) is either

endpoint in P1 or P2. To exclude this case we further assume for every vertex v ∈ S ∪ T the degree
is bounded by δ(v) ≤ 1. The strong relation between node-well-linkedness and treewidth illustrates
the following lemma.

Lemma 1. Let k be the size of the largest node-well-linked vertex set in G. Then k ≤ tw(G) ≤ 4k.[8]

2.4 Degree Reduction

To derive node-linkedness from edge-linkedness we fixed some assumptions. These hold using a sub-
graph G′ that satisfy the requirements. The existence of such sub-graph is given by the following
theorem.

Theorem 2. Let G be any graph of treewidth k. Then there is a sub-graph G′ of G, whose max-
imum vertex degree is 3, and tw(G) = Ω(k/poly log k). Moreover, there is a set T ⊆ V (G′) of
Ω(k/poly log k) vertices, such that T is 1-well-linked in G, and each vertex of T has degree 1 in
G.[3]

3 Path-of-Sets System

The path-of-sets system is the main combinatorial object in both [1] and [4]. It is used as interme-
diate step to obtain a grid minor from a given graph.

Definition 5 (path-of-sets system). Let G = (V,E) be any undirected graph. We call Pr,h = (S,F)
a path-of-sets system with width r and height h of G under following conditions.

• The sequence S = {S1, . . . , Sr} ⊆ P(V ) is disjoint and for every 1 ≤ i ≤ r, G[Si] is connected.

• For the set of flows F =
{
F1 : S1

h:h
 1 S2, . . . , Fr−1 : Sr−1

h:h
 1 Sr

}
, all paths in P =

⋃
F∈F are

node disjoint and there is no Fi ∈ P containing a vertex v0 ∈
⋃
Si∈S Si as inner vertex.

• For any 1 < i < r the sets of vertices Ai = Si ∩ V (Fi−1) and Bi = Si ∩ V (Fi) are 1-linked in
G[Di].
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[1, p. 9]

Julia Chuzhoy uses a more strict definition of 3 in [4, Definition 2.7]. Unfortunately it is not needed
and therefore left out. In addition she distinguish between different path-of-sets systems based on
the linkedness of Ai and Bi. In this context definition 3 is categorized as strong path-of-sets system.
Other categories are weaker definitions and a strong path-of-sets can be obtained from them to the
cost of height.

Theorem 3. Every graph G containing a path-of-sets system Ph,h minor contains the (
√
h×
√
h)-

grid as a minor as well.

Let Ph,h = (S,F) be a path-of-sets system in a graph G = (V,E) according to its definition. For

every 1 < i < h let Qi = F : Ai
h:h
 Bi, that exists because (Ai, Bi) is 1-linked by definition.

Furthermore V (Qi) ⊆ Si and Si is connected. Hence for every path P1 ∈ Qi exists at least on path
P2 ∈ Qi connected to P1 threw another path βP1P2 ⊆ Si with no inner vertex in V (Qi).

The proof of theorem 3 in [1] uses this structure to build a new set of paths H by concatenating
F1Q2F2, . . . , Qr−1Fr−1. Informal, the paths in H can be considered as the horizontal lines of the
grid. The vertical lines are obtained by rerouting the horizontal paths using the specified intercon-
nections βP1P2 within the sets from S. Notice because βP1P1 ⊆ Si is internally disjoint from all other
paths in Qi contraction of βP1P2 will not affect the way P1 and P2 traverse H. Building a vertical
path of length

√
h can cause the contraction of

√
h sets. As a result P contains a (

√
h×
√
h)-grid

as a minor. This is far away from a proof and in fact more complicated but shows the general idea.
For the complete more in depth proof see [1, p. 50].

With regard to theorem 3 it is sufficient to proof every undirected graph G with tw(G) ≥ f(g)
contains a Pg2,g2 path-of-sets system as a minor to proof the excluded grid theorem 1.

4 Splitting Clusters

This section is the main contribution of [4]. It shows an iterative approach to split a path-of-sets
system Piri,hi to double its width while shrinking the height hi+1 = h/217(i+1)[4, Theorem 3.1]. To
create a minor (g× g)-grid width and height of g2 are acquired, according to theorem 3. The itera-
tive process start with an initial path-of-sets system of width 1. Hence 2 log2 g steps are performed
to get sufficient width and therefore initial height of h0 = 2g36 is required. Combined with the
degree reduction with a cost of poly log g in treewidth we get the result f(g) = O(g36poly log g)
from Julia Chuzhoy’s paper [4].

Let G = (V,E) be the graph from a performed degree reduction, described earlier, with terminals
T ⊂ V . T is by definition 1-linked therefore P1

1,2g36 = ({T}, {F : T1  1 T2}) is a valid initial
path-of-sets system, with T1, T2 ⊂ T are 2 disjoint and equal sized subsets of terminals. Notice G
is connected and so are all paths P, P ′ ∈ P1.

To split a path-of-sets system every cluster S ∈ S will be split separately. Therefore S splits into
two disjoint clusters C1, C2 ⊆ S \(T1∪T2), well-linked in G[C1] and G[C2] respectively. Additionally
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both clusters are required to be connected to T1 by a flow F : C1 ∪C2
k:k
 1 T1. This is then called a

weak 2-cluster chain, a more formal definition is found in [1, Definition 4.1]. More important is the
existence of a 2-cluster chain.

Definition 6 (2-cluster chain). Let G be a graph, T1, T2 two disjoint sets of vertices, with |T1| = k
and |T2| = k′ = k/64, where k ≥ 12000 is a power of 2. A 2-cluster chain (X, Y, T̃1, T̃2, E

′) consists
of:

• two disjoint clusters X, Y ⊆ V (G)

• a subset T̃1 ⊆ T1 ∩X, with |T̃1| = k′, and a subset T̃2 ⊆ T2 ∩ Y , with |T̃2| = k/512

• a set E ′ ⊆ E(X, Y ) of k/512 edges, whose endpoints are all distinct

Let ΥX ⊆ X be the subset of vertices of X incident on the edges of E ′, and let ΥY ⊆ Y be the
subset of vertices of Y incident on the edges of E ′. Then:

• T̃1 ∪ ΥX is (k/512, a∗)-well-linked ind G[X] and T̃2 ∪ ΥY is (k/512, a∗)-well-linked in G[Y ],
for a∗ = 1/64.

[4, Definition 3.1]

Considering the sequence (Y1, X1, . . . , Yr, Xr) the 2-cluster chain is strongly related to the path-of-
sets system. Therefore every cluster, created by a split operation, needs to contain a 2-cluster chain.
These can be obtained from a weak 2-cluster chain, hence it is sufficient to show their existence
within a cluster created by a split operation.

To proof the existence of a weak 2-cluster chain, the clusters are handled differently based on
their connectivity to their surrounding environment. Therefore Julia Chuzhoy uses the bandwidth
property and balanced cuts(see [4, p. 5]) showing that linkedness of the terminals can be used
to argue about the connectivity of clusters. Informally said, nodes of a cluster connected to the
terminals with disjoint paths can be connected together using their internally linkage. These must
exist as G is connected and has an appropriate treewidth. With a good partition of the terminals
T the structure repeats itself again with every iterative step and choosing an appropriate height
of terminals for P0 delivers a sufficient path-of-sets system P 2 log g

g2,g2 containing a (g×g)-grid as a minor.

5 Conclusion

The proof of the excluded grid theorem has several approaches. All of these share a common
projection of linkedness and its relation to treewidth. Though all share similar techniques and com-
binatorial objects, Julia Chuzhoy delivers a more lightweight and simplified proof while improving
the bound. It was very interesting to see how treewidth, node-linkedness and edge-linkedness can be
used in such a closely related and exchangeable manner as a structural tool for minors. Her recur-
sive solution shows promising results and we can expect more publications, based on her research,
in the near future.
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