
RWTH-Aachen

Bachelor Thesis

LuFG Informatik 12: Software and Tools for
Computational Engineering

Integer Program Solving Call Tree
Reversal

Author:
Michael Herwig

Supervisor:
Johannes Lotz

Examiner:
Uwe Naumann

March 31, 2016

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

i

Contents

1 Introduction . 1
2 Call Tree Reversal . 3
2.1 Reversal Schema . 4
2.2 Result Checkpointing . 8
2.3 Call Tree Reversal Problem . 11
2.4 Heuristics . 13
3 Integer Program Formulation . 16
3.1 Basic Formulation . 16
3.2 Result Checkpointing Extension . 19
4 Call Tree Generation . 22
4.1 Constructor . 22

4.1.1 Application . 22
4.1.2 Contraction . 24
4.1.3 Recursion Constructor . 26
4.1.4 Obtaining Call Trees . 28

4.2 Randomization . 29
4.3 Generator And Configuration . 29
5 Analyzation . 31
5.1 Sequence Structure . 31
5.2 Fork Structure . 36
6 Included Software . 39
7 Conclusion . 42
8 Outlook . 44
References . 46

1 Introduction 1

1 Introduction

The call tree reversal is an algorithmic solution to reverse data flow of program execu-
tion with limited available memory using argument checkpointing. Call tree reversal
is proven to be NP-complete[3] and, hence, finding a good solution in reasonable time
is unlikely. Established heuristics exists for this problem but they lack potential for
customization. In addition, they do not consider the possibility of result checkpoint-
ing which is an extension to the standard call tree reversal problem. To challenge
those issues this thesis introduces an IP formulation solving call tree reversal. This
formulation is furthermore extended to support result checkpointing and serves as
foundation for further analysis comparing solutions for call tree reversal with and
without result checkpointing.

The second section will introduce the call tree reversal problem. Therefore, used no-
tation is defined and the reversal itself is explained in more detail showing insights
of an actual reversal as preparation to the mathematical representation. Using the
previous inspections section 2.2 will present the result checkpointing extension and
point out applicable situations by comparison. After section 2.3 finalize the call tree
reversal definition with an example and section 2.4 manifest already existing solutions.

Section 3 derives the IP formulation for solving call tree reversal starting with the
basic formulation in section 3.1. Furthermore, the basic formulation will show more
insights of an actual reversal and encapsulates recursion as foundation for the result
checkpoint extension in section 3.2. Therefore, section 3.2 extends the previous model
by additional properties mapping the elaborated characteristics of result checkpoint-
ing.

Before the extension can be analyzed a call tree generator is developed in section 4.
To do so section 4.1.1 will introduce an abstract mathematical model for tree gener-
ations. This model is than simplified in section 4.1.3 to make it handier for practice
without losing compatibility and finally mapped to call trees. The following section
4.2 will add randomization into the model and section 4.3 will close up with some
practical definitions used for analysis.

In section 5 all technical expertise is used form previous sections to analyze the impact
of using result checkpointing. To do so a simple sequence structure is introduced and
the call tree generator configured to generate sequences with different chractersitics.
Those sequences are then analyzed using different problem descriptions to elaborate
different cases which are in turn used to precise the generator configuration leading
to more precise and accurate conclusions. Section 5.1 will than use this sequence

1 Introduction 2

structure and charactersitics to build more complex structures which get analyzed
again under similar aspects.

The thesis completes with a summarization of developed and used software in section
6. The following conclusion in section 7 recaps all previous sections and concentrate
on their perception giving a short synopsis of all major results. Finally, section 8
closes up with impulses for future related work which were out of scope.

2 Call Tree Reversal 3

2 Call Tree Reversal

The call tree reversal, short CTR, is an algorithmic solution for data-flow reversal
without intraprocedural checkpointing, applied to call trees.

Definition 1. A call tree T = (S, r, χ) is a directed rooted tree with vertices S, root
r ∈ S and χ[s] ⊂ S denotes the children of s, further called callees of s, for every
vertex s ∈ S. Additionally, we call parents callers and vertices subroutines.

To reverse data-flow program execution splits into two sections, forward and reverse.
The forward section basically executes the program as it would normally but in addi-
tion records its data-flow within every subroutine by pushing corresponding variables
to a stack. Afterwards the reversal part is executed propagating over recorded data.
This is done by popping the previous created stack and yields a reversed data-flow
which is further interpreted for application purposes.

Figure 1 shows a minimal example of a single call from f to g. Every edge denotes
the call of a subroutine, indicated by indentation. The execution order is from top
to down. Whether a given subroutine shall record or interpret is here determined
by its run mode(RECORD, INTERPRET) given as an argument at runtime. Such
functions are mostly generated from existing source code and forwards the call to an
implementation of the corresponding routine for given run mode[2, p. 78]. A common
application of CTR is algorithmic differentiation, thus you will see ADJOIN as run
mode in referenced literature for interpretation which is interchangeable.

f (RECORD)

g (RECORD)

f (INTERPRET)

g (INTERPRET)

Fig. 1: Illustration of a call tree reversal recording the execution of two subroutines
with following interpretation.

Notice only recorded data can be interpreted and recording data demands at least one
execution of the corresponding subroutine. Furthermore, recorded data will increase
the stack size requiring more available memory which can only be freed after its inter-
pretation. Thus there is a minimal amount of memory required to reverse properly.
However, the current solution, like in figure 1, records the entire program execution,
before interpretation and therefore requires the most amount of memory possible. For

2 Call Tree Reversal 4

large call trees the required amount of memory gets swiftly infeasible. While buying
more memory is a legit solution it suffers in scalability and dramatically shrinks the
size of call tree which can be reversed. Therefore, the following sections will introduce
new run modes leading to an algorithmic solution which sinks the required amount
of memory at the cost of computation time.

2.1 Reversal Schema

While the previous reversal separated data recording and its interpretation totally
form each other the upcoming solution will combine both resulting in a joint execu-
tion. Therefore, the forward section will not record the entire data flow and instead
store subroutine arguments used to reevaluate data right before it will be reversed.
This technique is called subroutine argument checkpointing and delivers a ”out of con-
text” interpretation independent of the enclosing data flow[2, p. 78]. If a routine is
reversed without the context of its subroutines data-flow using subroutine argument
checkpointing we refer to it as joint call reversal and otherwise as split call reversal,
figure 2 opposes both.

f (RECORD)

g (RECORD)

f (INTERPRET)

g (INTERPRET)

(a) split call reversal

f (RECORD)

g (STORE INPUTS)

g (RUN ONLY)

f (INTERPRET)

g (RESTORE INPUTS)

g (RECORD)

g (INTERPRET)

(b) joint call reversal

Fig. 2: Comparison of different reversal techniques according to the same call tree. (a)
records the entire data flow and (b) restores subroutine arguments to record its
execution right just in time. Notice (b) runs subroutine g twice, once without
recording its internal data-flow, here by passing the RUN ONLY argument
and once recording it.

This technique saves memory to the cost of running g twice but before we argue
further about memory consumption and computational costs the current call tree
definition 2 leaks a mathematic representation to express particular characteristics.

2 Call Tree Reversal 5

Definition 2. An annotated call tree TA = (S, r, χ,mc,m, c) is an expansion of a
call tree with mc[s] ∈ R≥0 denotes the size of the subroutine argument checkpoint for

any s ∈ S and m[s] ∈ R|χ[s]|+1
≥0 the tape sizes required for execution before(m[s]0) and

after(m[s]|χ[s]|) a subroutine call. c[s] denotes the computation cost to run s.

For simplification purposes notation is expanded by constants for every subroutine
to refer to its vertex representative by name and m[f] =

∑|χ[s]|
i=0 mi yields the total

amount of memory required to fully record subroutine f . Now memory consumption
and computational time can be expressed for split call reversal

MEMORY = m[f]0 +m[g] +m[f]1

COST = c[f] + c[g]

and joint call reversal.

MEMORY = m[f]0 + max {mc[g] +m[f]1,m[g]}
COST = c[f] + 2 · c[g]

Related literature uses operation counts(OPS) to measure the cost of computation.
However, the time of execution for operands may depend on several characteristics
like the given architecture, memory alignment and used data types(just to name a
few). To overcome this problem, we neglect operations and view cost a an uniform
unit of measurement.

The previous representation hided the amount of memory saved because f was shown
as a single call disregarding the fact f splits into two parts embracing the call to g.
The succeeding part m[f]1 is exactly the part saved within the reversal(assuming
mc[g] < m[g]) because it is reversed before g and hence can be popped before g gets
recorded.

m[f]0

mc[g]

m[f]1

m[f]0

m[g]

m[f]0

m[g]

m[f]1

Fig. 3: Illustration of a stack during reversal. The left hand side shows the state of
the stack before f is reversed and the center before g is reversed using an
argument checkpoint for g. The right hand side opposes a reversal without
argument checkpointing.

2 Call Tree Reversal 6

The current example suffices to show the difference between both reversals but is
scarce in complexity for more accurate inspections. Before going into more extensive
examples an alternative illustration is introduced packing related instruction into a
more compressive view.

run subroutine record tape

interpret tape free memory

store subroutine arguments restore subroutine arguments

Fig. 4: Overview of possible run modes attached to the borders of subroutine vertices.

The new representation displays a square for every subroutine call, surrounding its
name(constant symbol). If a subroutine is invoked the given run mode argument
is attached as dart covering one border of the boundary. Possible run mode pre-
sentations are summarized in figure 4. Additionally, several run modes are allowed
covering multiple borders. This allows the compression of a sequence of invocations
for the same subroutine. The order of execution is given by their implicit dependency.
Subroutine calls are visualized by directed arcs, ordered left to right and depth first.

g (RESTORE INPUTS)

g (RECORD)

g (INTERPRET)

g g

Fig. 5: Example of an equivalent reversal using different representations. Note the
right hand side is more accurate showing implicit dependencies like the demand
of running the subroutine in order to record it.

So far the example contained only one call to a subroutine but considering multiple
calls it is possible to choose for every call to either store an argument checkpoint or
record the entire execution.

Definition 3. Let T = (S, r, χ) be a call tree. We call y = y[s]s∈S ∈ σ|S| a reversal
scheme of T and σ the possible reversal modes for every subroutine.

2 Call Tree Reversal 7

Notice definition 3 attaches reversal modes to subroutines. This is admissible because
every subroutine within the call tree has only one parent and hence the reversal mode
always refer to the call from its unambiguous caller. For root nodes the reversal
mode can assumed to be split mode. Figure 6 shows appliance of reversal modes to
the preceding call tree example. For convenience reversal schemas for a given call tree
C = (S, r, χ) are written as a set of tuples R = {(s, y[s])|s ∈ S \ {r}} ∪ {(r, 0)} and
may omit the fixed pendant ∪{(r, 0)}.

f

g

(a) call tree

f

g

f

g

(b) split reversal, R = {(g, 0)}

f

g

f

g g

(c) joint reversal, R = {(g, 1)}

Fig. 6: Overview of different reversals(center, right) according to the same call
tree(left).

Choosing reversal schemas for call trees with more than two nodes results in combi-
nations of run modes and how they are nested into each other. Generally, two cases
are of interest, split over joint and joint over split. Figure 7 opposes both.

f

g

h

(a) call tree

f

g

h

f

g

h h

(b) split over joint
R = {(g, 0), (h, 1)}

f

g

h

f

g

h

g

h

(c) joint over split
R = {(g, 1), (h, 0)}

Fig. 7

Comparing them shows one key aspect of a joint call not already mentioned. Split
over joint stores the argument checkpoint for h within the first run because it is the
last time g is running and therefore the last moment to grab the arguments. Joint

2 Call Tree Reversal 8

over split does not require any more memory for its children because it will be called
once again hence there is no need to store data that’s getting reevaluated anyway.
This detail seems small but considering multiple children and nested structures a joint
call acts like a termination symbol for a depth first search recoding all data needed
to reverse the root node. Thus a joint call splits the reversal of a tree into reversals of
subtrees each with its own data context independent of the context of other subtrees.
If I refer to the context of a subroutine I refer to the data context of the subtree the
subroutine is reversed in.

2.2 Result Checkpointing

The previous section introduced argument checkpointing as a method to shrink the
maximum amount of memory required to reverse a call tree to the cost of additional
computation. This section introduces a converse method increasing the amount of
memory to stall additional computation.

Considering a reversal without argument checkpointing every subroutine is called ex-
actly once hence there is no potential to save computation time. Furthermore, this
means computation time can only be reduced if argument checkpointing is used.

Figrure 8 shows the impact of nested subroutine argument checkpoints to the amount
of repetitions running subroutines. The amount of additional reruns for a given
subroutine is the number of argument checkpoints used by all parent calls. Applying
this to the example yields

COST(R1) =
∑
s∈TA

(c[s]) +
d∑
i=0

((i+ 1) ∗ c[gi]) + (d+ 1) ∗ c[h]

as total costs for the reversal. Note h is called (d + 1) times and every time with
the same arguments resulting into the same outcome. A result checkpoint tries to
overcome this massive amount of reevaluation by storing the result of a subroutine
making additional calls unnecessary if the subroutine is not part of the reversed data
context. In order to embed result checkpointing into the present notation additional
definitions are necessary.

Definition 4. Let T = (S, r, χ) be a call tree. We call r = r[s]s∈S ∈ {0, 1}|S| a
result checkpointing scheme for T with r[s] = 1 iff the subroutine s ∈ S shall be result
checkpointed.

2 Call Tree Reversal 9

f

g0

g1

...

gd

h

f

g0

g1

...

gd

h

g0

g1

...

gd

h

g1

...

gd

h

. . .

gd

h

gd

h

gd

h h

Fig. 8: Reversal of a call tree TA of depth d+2 with d ∈ N and R = {(v, 1)|v ∈ V (TA)}

store subroutine results restore subroutine results

Fig. 9: Legend of arcs used to visualize result checkpointing within the compressed
representation.

The result schema could have been mapped into the existing defintioin of a reversal
schema however this would mix up argument and result checkpointing without any
immediate dependency. Additionally, it makes it easier to compare reversals without
and with result checkpointing by just adding another schema. If no result schema is
explicitly given the reversal contains no result checkpoint by default.

Notice for every subroutine not within the context of the root node is called exactly
two times if result checkponting is enabled, once to estimate the result and a second
time to record the data flow. Figure 10 shows the previous example with result check-
pointing for every subroutine with at least two parents. Calculating the preformed
computation

2 Call Tree Reversal 10

f

g0

g1

...

gd

h

f

g0

g1

g0

g1

g2

g1

...
. . .

gd

h

gd

h h

Fig. 10: Reversal of the call tree from figure 8 with result checkpointing.

COST(R2) =
∑
s∈TA

(c[s]) +
d∑
i=0

(c[gi]) + c[h]

estimates the total amount saved to

COST(R1)− COST(R2) =
d∑
i=1

(i ∗ c[gi]) + d ∗ c[h]

using result checkpointing. Before the amount of additionally required memory can
be expressed the characteristic of result sizes needs to be added to the underlying
data type.

Definition 5. An annotated call tree with result checkpoint sizes TR = (S, r, χ,mc,mr,m, c)
is an expansion of an annotated call tree with mr[s] is the required tape size to store
a result checkpoint for subroutine s ∈ S.

So the size of memory required for all result checkpoints sums up to
∑d

i=1(mr[gi]) +
mr[h]. Keep in mind this amount of memory is not added plain to the required

2 Call Tree Reversal 11

memory of a reversal because the memory peak has not to be at the start of revers-
ing the root node and result checkpoints can be released during the reversal if not
longer needed. A formal definition of the additional memory is within the IP formu-
lation later. Also notice the memory for result checkpointing is fixed but the saved
computation grows linear with the depth of nested joint calls.

2.3 Call Tree Reversal Problem

The previous sections explained the use of reversal schemas to reduce memory con-
sumption of call tree reversals to the cost of additional computation. If enough
memory is available this would not have any sense. However, for real world applica-
tions the required amount of memory is not viable. The call tree reversal problem is
to find a feasible and optimal reversal schema for arbitrary hardware.

Definition 6. The call tree reversal problem CTR(TA,m>) is to find a valid reversal
schema y for a given annotated call tree TA and memory bound m> ∈ R. The reversal
schema must hold the constraint of memory bound with memory peak MEMORY(y) ≤
m> and minimizes its cost COST(y) with respect to all other possible schemas.

Analog definition 6 could be defined utilizing result checkpointing, skipped here. CTR
is proven to be NP-complete[3] consequently finding an optimal solution in reasonable
time is unlikely for major sizes. This section introduces basic characteristics with a
concluding example.

f5

g5

h10

10

i5

10 10

15 5

Fig. 11: Illustration of an annotated call tree with given left to right and depth-first
ordering. The memory size of subroutine argument checkpoints is left to the
corresponding subroutine, drawn as squares. Tape sizes for execution are
drawn left, right or in between of edges indicating the call of a callee from
its caller.

Global joint reversal designates the reversal with every subroutine reversed in its
own context, written R1(TA) and R0(TA) is the reversal schema without argument

2 Call Tree Reversal 12

checkpointing called global split reversal. These reversals have an important meaning
because the global joint reversal minimizes the amount of memory required while max-
imizing the computational cost. On the other hand, global joint maximizes memory
requirements but minimizes computation. As a result

MEMORY∆(TA) =MEMORY(R0(TA))−MEMORY(R1(TA))

COST∆(TA) =COST(R1(TA))− COST(R0(TA))

describes the possible range for characteristics of any arbitrary reversal. Furthermore,
it bounds the solution space for a given CTR to quickly evaluate whether a CTR is
infeasible or can be used to rate a given solution.

R1 ={(f, g, 1), (g, h, 1), (g, i, 1)} MEMORY = 225,COST = 830

R1 ={(f, g, 1), (g, h, 1), (g, i, 0)} MEMORY = 225,COST = 780

R2 ={(f, g, 1), (g, h, 0), (g, i, 1)} MEMORY = 285,COST = 630

R3 ={(f, g, 1), (g, h, 0), (g, i, 0)} MEMORY = 295,COST = 580

R4 ={(f, g, 0), (g, h, 1), (g, i, 1)} MEMORY = 225,COST = 550

R5 ={(f, g, 0), (g, h, 1), (g, i, 0)} MEMORY = 225,COST = 500

R6 ={(f, g, 0), (g, h, 0), (g, i, 1)} MEMORY = 285,COST = 350

R0 ={(f, g, 0), (g, h, 0), (g, i, 0)} MEMORY = 300,COST = 300

Fig. 12: Listing of all possible reversals for the call tree from figure 11 with their
memory peak and computation cost.

The number of different reversal schemas for a given call tree is (|S| − 1)|σ| as a re-
sult figure 12 already listens a bunch of reversals for a small example. If using only
argument checkpointing |σ| = |{0, 1}| = 2 but with result checkpointing the reversal
encoding needs to be adjusted to |σ| = |{0, 1}×{0, 1}| = 4, like mentioned earlier. Se-
lecting a memory bound lets us select an optimal solution, figure 13 shows an example.

For bigger call trees the number of reversal gets unmanageable and leads to the prob-
lem how to value a given reversal because it is not possible to compare it to an optimal
solution in decent time. With the given boundary of memory and computation cost
it is possible to rate a reversal based on its relative position within the solution space.
Unfortunately, this can lead into distortions as covered later in analyzation.

2 Call Tree Reversal 13

f

g

h i

f

g

h i

g

h i i

Fig. 13: Visualization of the optimal reversal R5 with memory bound m> = 250.

Another possibility is a comparison to other solutions considered to be relatively good
with application in mind. One way to calculate useful reversals for comparison is the
usage of heuristics.

2.4 Heuristics

This section introduces three heuristics taken from [2]. Two of them result into the
same solution but differentiate in runtime characteristics. In order to formulate those
heuristics, it is necessary to sort subroutines based on their tape size required for
recording. Therefore, a mapping SORT is defined which is basically a permutation
of subroutines ordered by a given predicate applied to tape sizes.

Data: call tree TA, memory bound m>
Result: reversal schema y
I = SORT(S(TA), <);
y[I] = 1;
i = |I|;
while i > 1 do

y[I[i]] = 0;
if MEMORY(y) > m> then

y[I[i]] = 1;
end
i = i− 1;

end
Algorithm 1: Largest-Memory-Increase-First(RLMI(TA))

The Largest-Memory-Increase-First heuristic, shown in algorithm 1, starts with a
global joint reversal and tries to switch every subroutine call to split mode. This
leads to an increased memory peak and may makes the reversal infeasible, if so the

2 Call Tree Reversal 14

change is reverted. The algorithm loops through an ordered set of subroutines hence
it starts with the subroutine requiring the most memory for recording and continues
with the second most and so forth.

Data: call tree TA, memory bound m>
Result: reversal schema y
I = SORT(TA, <);
y[I] = 0;
i = |I|;
while i > 1 do

y[I[i]] = 1;
if MEMORY(y) < m> then

break;
end
i = i− 1;

end
Algorithm 2: Largest-Memory-Decrease-First(RLMD(TA))

Using a reversed ordering defines the Smallest-Memory-Increase-First heuristic which
results into the same solution as using the Largest-Memory-Decrease-First heuristic
but is expected to reach the approximate solution faster according to [1]. The Largest-
Memory-Decrease-First heuristic starts with a global split reversal to obtain a feasible
solution and switches subroutine calls to split mode increasing the memory peak until
the reversal is infeasible.

Data: call tree TA, memory bound m>
Result: reversal schema y
I = SORT(S(TA), >);
y[I] = 1;
i = |I|;
while i > 1 do

y[I[i]] = 0;
if MEMORY(y) > m> then

y[I[i]] = 1;
end
i = i− 1;

end
Algorithm 3: Smallest-Memory-Increase-First(RSMI(TA))

2 Call Tree Reversal 15

The given heuristics are originally taken by [2] and further used to value solutions
obtained by the established integer program formulation within the analyzation part.

3 Integer Program Formulation 16

3 Integer Program Formulation

In this section two IP formulations are derived solving the call tree reversal problem,
once with and once without result checkpointing. Therefore, the reversal is reviewed in
more detail to work out a universal formula for the resulting cost of a reversal schema
and its’ peak memory consumption. Further these formulas are used to express the
constraints of bounded memory and optimization of computational cost. First the
version without result checkpointing is derived and later enhanced to include result
checkpointing.

3.1 Basic Formulation

In order to evaluate peak memory consumption for a given reversal schema R = y of
call tree TA = (S, r, χ,mc,m, c) every step within the reversal needs to be considered
which could possibly lead to a new peak. Therefore, it is necessary to reflect every
memory allocation and its data context.

For a fully split reversal this is straight forward because all data is recorded in one
context before it is reversed. On the other hand, every subroutine argument check-
point creates a new data context. Although an argument checkpoint characteristics
creates its own context its data flow is not independent of its parent context because
in order to guarantee a correctly reversed data flow there is at least some part of
the parent embracing context reversed after. As a consequence, the only data con-
text with no previous data on the stack is the root context. Before the amount of
prepending data on the stack can be evaluated it is necessary to calculate the total
amount of memory a context requires to reverse. To do so the context must include
all recorded data of subroutines wihtin the context plus the data needed to restore
every sub context at the time its needed, which are the argument checkpoints. The
following formula expresses exactly this relationship in a mathematical way.

M f [s] = m[s] +
∑
sc∈χ[s]

(1− y[sc]) ·M f [sc] + y[sc] ·mc[sc]

(1 − y[sc]) evaluates to 0 if the context of the subroutine is encapsulated by an ar-
gument checkpoint thus y[sc] = 1 and the context includes mc[sc] to restore the
subroutines’ context later. Otherwise y[sc] = 0 and mc[sc] is not included because
the current context completely occupies the context of its subroutine and M f [sc] is
added recursively.

For a fully joint reversal the number of different context is equal to the number of rou-
tines and every routine is reversed within its own encapsulated data flow. Therefore,

3 Integer Program Formulation 17

it is necessary to evaluate the current amount of memory on the stack every time a
subroutine is reversed. This leads to a special relationship between caller and callee
and how the data required for the reversal of a callee is embedded into the caller’s
context based on the chosen run mode. To analyze this relation figure 14 shows a
generic example used to further derive the required formula.

f

g. . .

. . .

. . .

Fig. 14: Highlighted part of a reversal with a nested context of g and embracing
subtrees displayed as dashed triangles. Note g has no specified run mode
because it is considered to be variable.

In order to only specify memory peaks, the formula is extended by intermediate re-
dundant steps describing the state of the stack right before one of its subroutines
is called. M r[s, i] is the amount of memory on the stack during the reversal of s
before the i-th subroutines’ data is pushed not including a conditional checkpoint.
M r[s, |χ[s]|+ 1] is the size of the stack including the entire data context of s and all
data of parent context not reversed yet. Figure 15 visualizes the different states of
the stack and the according notation using M r.

. . .
m[f]k

(1− y[g]) ·M f [g] + y[g] ·mc[g]

m[f]k+1

. . .

M r [f, |χ[f]|+ 1]

M r[f, k]

M r[f, k + 1]

Fig. 15: Visualization of different states of the stack during the reversal of f according
to figure 14. g is assumed to be the k-th child of f.

Basically M r[f, k] denotes the data on the stack which is needed to be hold during
the reversal of g. For the actual reversal of g its’ data context needs to be pushed

3 Integer Program Formulation 18

which leads to the equation

M r[g, |χ[g] + 1|] = M r[f, k] +M f [g]

, with

M r[f, k] = M r[f, k + 1]− ((1− y[g]) ·M f [g] + y[g] ·mc[g] +m[f]k+1)

describing the amount of memory on the stack right before g is reversed. The equation
additionally clarifies the redundancy of M r[f, k] because M r[f, k] < M r[f, k] +M f [g]
with M f [g] > 0.

. . .
m[f]k

M f [g]

M r [g, |χ[g]|+ 1]
M r[f, k]

Fig. 16: Visualization of the stack right before g is reversed, according to figure 14

For the root node r no caller exists hence no data is on the stack before r is recorded
which yields

M r[r, |χ[r]|+ 1] = M f [r]

as initial amount of memory required for reversal and terminates the recursive amount
of prepending memory for all subroutines. Finally, constraints are added to guarantee
the chosen reversal does not overstep a given memory bound m>.

M r[s, |χ[s]|+ 1] < m> : s ∈ S

To record the data context of a subroutine it needs to be executed before. As a result,
every argument checkpoint results into a reevaluation of the entire subtree. The cost
of such reevaluation is given by

C[s] = c[s] +
∑
sc∈χ[s]

C[s]

which yields additional computation costs of

Cr[s] = y[s] · C[s] +
∑
sc∈χ[s]

Cr(sc)

for the reversal of given subroutine and

Cr[r]→ min

3 Integer Program Formulation 19

is the objective to be minimized. Here the cost function is defined recursive showing
the nested relation between the chosen run mode of a subroutine and its influence
to all its direct and indirect children. However, unfolding Cr leads to an alternative
definition

Cr[r] =
∑
s∈S

y[s] · C[s]

as objective. The call tree is constant at the time the IP formulation is built thus C[s]
can be precomputed to a vector cr = (C[s])s∈S minimizing the objective definition to
the final version with a single scalar multiplication.

Cr[r] = cTr ∗ y → min

This finalizes the first IP formulation. The next section will extend this formulation
to include result checkpointing. Unfortunately, this will result to a nonlinear cost
function and influences the performance of commonly used branch and cut algorithm
dramatically.

3.2 Result Checkpointing Extension

To support result checkpointing it is necessary to choose independently whether a
result checkpoint is stored for a given subroutine. Therefore, the variables are ex-
tended by a result checkpointing schema r = ({0, 1})s∈S and previous definitions are
adjusted taking care of the new schema, indicated by the index r.

First the memory requirement to store the context of a subroutine is adjusted, pre-
viously referenced as M f . Contrary to previous definitions result checkpoints per
definition are stored for subroutines not within the same context. If anything result
checkpoints are preferred for deeply nested subroutines as mentioned within the pre-
liminaries. Thus adding the size of a result checkpoint to a subroutine context efforts
additional patience.

M res[s] =
∑
sc∈χ[s]

r[sc] ·mr[sc] +M res

M res denotes the size of utilized result checkpoints for a subroutine recursively but
does not include the result checkpoint of the subroutine itself.
This comes by the nature of result checkpoints. Notice the reversal in figure 17 is fully
joint and hence consists of four different contexts, one for each subroutine. Further
when g is recorded the result checkpoint of h is used the last time although h is not
part of g’s context. Generally spoken a result checkpoint is utilized the last time

3 Integer Program Formulation 20

f

g

h

i

f

g

h

g

h

i

h

i i

Fig. 17: A small example of call tree reversal utilizing result checkpointing.

when the parent context is recorded. Additionally, this example shows why M res[h]
does not include the result checkpoint of h because the time h is checkpointed it will
be run anyway next time to record the internal data flow. Thus the time h gets
argument checkpointed the corresponding result checkpoint can be released. Keeping
this in mind M f can be extended to

M f
r [s] = M f [s] + y[s] ·M res[s]

conditionally including result checkpoints if the corresponding subroutine is not part
of the subroutine’s context. M r needs no further adjustments because it just works
on the abstraction of a context and it was possible to express result checkpoints as
part of the context of a subroutine.

Finally, the cost definition needs to be renewed. Here we benefit from the previous re-
cursive definition Cr. The actual cost for reevaluating the context of given subroutine
were given by

C[s] = c[s] +
∑
sc∈χ[s]

C[s]

and needs to be modified to take result checkpoints into account. Therefore, subrou-
tine costs are only added iff no result checkpoint is present or the subroutine is part
of the current context and needs to be recorded. To express the summation of all
reevaluations used to record the subroutines context a new formula

Cf
r [s] = c[s] +

∑
sc∈χ[s]

(1− y[sc]) · Cf
r (sc) + y[sc] · Cr[sc]

3 Integer Program Formulation 21

is defined. For subroutines not within the reversed context Cr is added which is not
defined yet.

Cr[s] = r[s] ·

c[s] +
∑
sc∈χ[s]

Cr[sc]

Notice Cr utilizes not only result checkpoints for the children of s because it is possible
to store an argument checkpoint and use an existing result checkpoint at the same
time. Finally, Cr can be updated to

Cr
r [s] = y[s] · Cf

r [s] +
∑
sc∈χ[s]

Cr
r (sc)

without taking any initial cost into account to store all result checkpoints because
they are running anyway while recording the root node and Cr

r only implies additional
costs.

4 Call Tree Generation 22

4 Call Tree Generation

In order to argue about internal structures and their influence on particular charac-
teristics of the solver it is necessary to deduce a system viable to proof the existence
of internal structures without the loss of abstraction in declaration. Additionally,
predefined structural requirements may lead to a non-uniform distribution of objects
using randomization which may distort result analysis if it leads to unexpected dis-
tribution within the anticipated objects. Therefore, the description of requirements
should prohibit such declarations and underlie a mathematical model which is capable
to express topology properties. The following sections will derive a capable system
from a minimalistic model and extend this until we come up with a set of tools to
further work on a higher level of abstraction.

4.1 Constructor

If the model should be capable to describe internal structures of the generate data
type it needs to adapt this type in a related way and therefore it is manifest to start
with a tree structure.

data BinaryTree t = Leaf | Branch (BinaryTree t) t (BinaryTree t)

Code 1: A binary tree definition in haskell.

Code example 1 shows a common definition of a binary tree in haskell. Notice the
recursive definition of subtrees combined into a higher order tree using a branch.
You can think of a branch from two perspectives. First from the higher order tree
containing subtrees. In this case the tree defines an abstraction of structure, subtrees
are embedded in. Alternatively, from a subtrees’ perspective the internal structure
is not changed and the branch builds just an application of themselves. Within the
next steps more complex structural combinations are built from bottom up throug
applications.

4.1.1 Application

Definition 7. For a given directed ordered graph G = (V,E,≺) we call the tuple
(v, e1, e2) ∈ V × E2 a branch if β(v, e1, e2) = (β1 ∨ β2) ∧ γ holds with:

β1 := ∃v1v2(v1 6= v2 ∧ e1 = (v, v1) ∧ e2 = (v, v2) ∧ e1 ≺ e2)

β2 := e1 = (v, v) ∧ e2 = (v, v)

γ := @v3(e1 6= (v, v3) ∧ e2 6= (v, v3) ∧ E(v, v3))

4 Call Tree Generation 23

If γ the branch is a leaf. Additionally, G can be extended by a relation B := {v ∈
V |∃e1, e2(β(v, e1, e2))} containing all vertices which are part of a branch within the
graph.

Note definition 7 of a branch allows circles. At this point neglect the option of circles
except for the loop indicating leaves.

Lemma 1. For every v ∈ V there is at most one branch b = (v, e1, e2) for any
e1, e2 ∈ E.

Proof. Let v ∈ V be any vertex and b1 = (v, e1, e2), b2 = (v, e3, e4) two valid branches
with b1 6= b2. v is both times the same hence edges differ. If e1 = e4 ∧ e2 = e3 either
e1 = e2 ⇒ b1 = b2� or e1 6= e2 =⇒

β1
e1 ≺ e2 ∧ e3 ≺ e4 ⇒ e1 ≺ e2 ≺ e1�. Otherwise

e1 6= e4 ∨ e2 6= e3 injures γ. Lemma 1 is proven by contraposition.

Definition 8. Let G = (V,E,≺) be a directed ordered graph. G is called fully branch-
decomposable iff ∀v(Bv) and B names the class of all fully branch-decomposable di-
rected ordered graphs. For any B ∈ B β : V 7→ V × E2 maps every vertex to its
unique branch by lemma 1.

To build a subset of B through application at least one primitive is required, previous
referenced as leaf.

Corollary 1. B⊥ = ({v}, {(v, v)}, ∅) ∈ B is the fully branch-decomposable graph in
B with at least on vertex, minimizing the number of vertices.

With a strict definition of fully branch-decomposable graphs an application can be
defined.

Definition 9. An application is a function ∆ : (B × V)2 7→ (B × V) defined for
valid tuples (B, v) ∈ B× V with v ∈ V (B). For the result of ∆((B1, v1), (B2, v2)) :=
(B0, v0), B0 needs to hold the application integrity property for B1 and B2. Further-
more, v1, v2 must be reachable from v0 within B0. A graph G0 holds the application
integrity property for another graph G iff G is a subgraph of G0 without any edge
leaving the subgraph in G0.

Basically an application guarantees the newly created graph contains two subgraphs
untouched as already mentioned. The next step is the definition of a valid application.

Definition 10. ∆B is called branch application with ∆B((B1, v1), (B2, v2)) = ((V0, E0,≺0

), v0) and

V0 := V (B1) t V (B2) ∪ {v0}
E0 := E(B1) t E(B2) ∪ {(v0, v1), (v0, v2)}
≺0 :=≺ (B1)t ≺ (B2) ∪ {((v0, v1), (v0, v2))}

4 Call Tree Generation 24

You will find applications using B⊥ instead of a tuple as parameter. This notation is
a shorthand because there is only one vertex to choose from B⊥.

Corollary 2. ∆B is a valid application.

With all this in mind it is possible to define any binary tree by nesting branch appli-
cations like in figure 18, not considering the loop at every leaf. Unfortunately, there
is nothing more what could be expressed by this system. A reasonable extension
would be the construction of any arbitrary tree. One might think a legit solution is
an abstraction of a branch application allowing an adjustable amount of children but
this would lead to a graph breaking the property of being fully branch-decomposable.
Obviously there is the need of fundamental changes because in fact every graph con-
taining a vertex with more than two children is not fully branch-decomposable.

Notice the root for a created binary tree is unambiguous. This is not naturally given
by the definition of an application because it let us choose any vertex we want rather
from anonymous nesting as part of the bottom up construction.

∆B

B⊥ ∆B

B⊥ B⊥

Fig. 18: Visualization of a binary tree created by nested application using
∆B(B⊥,∆B(B⊥, B⊥)).

4.1.2 Contraction

To overcome the previous problem, the creation of a graph splits into two differ-
ent phases, characterization and contraction. During characterization the graph is
likely built as before with some minor changes to store information for the following
contraction phase.

Definition 11. A contraction is a function α : G × E 7→ G with

α((V,E), {v, w}) := (V \{w}∪{v}, E\{{u,w}|u ∈ V }∪{{u, v}|{u,w} ∈ E∧u 6= v})

4 Call Tree Generation 25

Implicitly contraction prohibit loops hence there is no need to pay further attention
for them within the contracted graph. Furthermore, the order of contraction does
not vary the resulting graph. To determine edges to be contracted a relation C ⊆ E
is added to the graph structure containing those.

αC(G) =

{
G if |C| = 0,

α(αC\e(G), e) for any e ∈ C

αC(G) is the contraction phase. From now on every graph creation carries the required
relation. Therefore, the branch application needs to be updated.

Definition 12. The right hand side branch application ∆R
B works like the normal

branch application but marks its’ second edge (v0, v2) for contraction.

C0 := C(B1) t C(B2) ∪ {(v0, v2)}

Up to this point every application was defined using the internal structure of the
graph. From now on the right hand side branch application is used to build more
complex structures. An introducing example is a definition of the previous applica-
tion ∆B shown in figure 19.

Before concluding contraction there are some aspects deserved closer attention. First
only a right hand side branch application is defined. This is sufficient because every
construction using ∆R

B only differs in the ordering of its’ children from a potentially
left hand side constructor. Thus which application is chosen does not matter for
expressiveness. I prefer the right hand side constructor because it leads to a nested
formula with the first child always on the left in the most outer bracket. Second ev-
ery right hand side application results in exactly one new vertex within the resulting
graph. Third figure 19 shows λ naming a vertex. This notation will further occur
more often. It is used for implicit created vertices with no impact on the contracted
graph thus they are anonym and only passed through nesting.

Finally, the graph construction using nested application and following contraction
needs a formal definition.

Definition 13. The class of fully branch-decomposable graphs B∆R
B
⊆ B created by

applications of leaves is defined by induction:

(i) (B⊥, v) ∈ B∆R
B
× V, {v} = V (B⊥)

(ii) (B1, v1), (B2, v2) ∈ B∆R
B
× V ⇒ ∆R

B((B1, v1), (B2, v2)) ∈ B∆R
B
× V

4 Call Tree Generation 26

v0

v1 λ

v2 B⊥

===⇒
αC(G)

v0

v1 v2

Fig. 19: Visualization of an equivalent resulting graph for ∆B using ∆R
B with (G, v0) =

∆B((B1, v1), (B2, v2)) = ∆R
B((B1, v1),∆R

B((B2, v2), B⊥). The left hand side
shows the configuration and the right hand side the obtained graph after
contraction. Dashed edges are marked for contraction.

(iii) B∆R
B

:= {B|(B, v) ∈ B∆R
B
× V }

Lemma 2. The class of graphs GT := {αC(B)(B)|B ∈ B∆R
B
} is equal to the class of

trees.

Proof. By structural induction over a tree starting with leaves. Siblings are combined
using ∆B and a parent is the created vertex from an application of its’ children.

λ

λ

B⊥ λ

B⊥ λ

B⊥ B⊥

λ

λ

B⊥ B⊥

λ

λ

B⊥ B⊥

B⊥

⇒

λ

λ

B⊥ B⊥ B⊥

λ

B⊥

λ

B⊥

Fig. 20: Example of a more complex tree(right) created by a nested function of ap-
plications(left).

4.1.3 Recursion Constructor

The previous system is strong enough to build any tree thus the following sections
will relax the system to the sake formality to improve practical usage. However, the

4 Call Tree Generation 27

reference to this system is preserved and features added carefully. The sequentially
improved structure is called recursion constructor and is initially equal to the right
hand side branch application.

First the ordering constraint is removed mixing left and right hand side branch ap-
plication up. Thus the recursion constructor has two edges marked for contraction
and embracing the unmarked edge. This will not improve expressiveness because the
arbitrary ordering can always be mapped back to a left or right sided ordering.

Second a recursion constructor has an integer property n. Before the tree is generated
the recursion constructor unfolds into a sequence of recursion constructors of length
n. Each of this constructors are a copy of itself without this extension with its middle
edge set to the next constructor in the sequence. The last constructor keeps its edge
to the originally target. By default, n is equal to one.

⊥ ⊥

Fig. 21: Visualization of a recursion constructor. The looped edge indicates the cre-
ated sequence of length n and B⊥ is simplified to ⊥.

Third the middle edge can be marked individually if required. Notice this will cause
the sequence to have its edge marked as well but this can be bypassed by making
three recursion constructors in chain thus an implementation could offer to set both
individually. Precisely this relaxation makes it possible to choose for every edge to
be marked in particular. However, this does not break backward compatibility to
the previous system because constructors with fully marked edges can be contracted
with no impact and for multiple unmarked edges an intermediate constructor can be
defined as already mentioned.

Fourth constructors can be shared to multiple parent as long as the resulting structure

4 Call Tree Generation 28

is acyclic. This is the most useful extension. To retain backward compatibility cycles
are forbidden. Therewith a breadth search creates copies for all visited constructors
resulting in a tree with the same structural nature as if constructors were shared.

Nested recursion constructors are now quite similar to call graphs but they prohibit
circular references to guarantee termination and the contraction phase gives the possi-
bility to hook into structures or reorder them without touching the internal structure.
In fact an contracted edge does not result in an edge within the resulting graph but
from now on we stick more to the idea of an extended call graph namely and use
edge/call and vertex/sub-routine interchangeable.

4.1.4 Obtaining Call Trees

The recursion constructor defines a powerful tool for tree generation but misses costs,
tape sizes and argument and result checkpoint sizes in order to obtain a valid call
tree. To create those, every vertex is extended by a corresponding value set to zero
by default. However, this cannot create tape sizes between calls. This is where con-
traction comes into account.

For all attributes the contraction of two nodes adds both values plain together except
for tape sizes. Tape size are relatively added to the edge position of the caller not
counting calls marked for contraction. As a result, to place tape sizes between calls
it is necessary set a contraction call in between pointing to a vertex with the desired
tape size. The tape size of a vertex with children is always added at front.

λ

10

⊥

10

⊥

10

⊥

10

⊥

10

⊥

10

⊥

10

λ

⊥

10

20 20

⊥

10

10

Fig. 22: Example of a contraction leading to tape sizes between calls. On the left the
tree before contraction and on the right after.

4 Call Tree Generation 29

4.2 Randomization

To create call trees randomly two cases must be considered.

First the characteristics used to obtain a call tree must be chosen randomly. Unfor-
tunately, it is not enough to choose corresponding random values for each recursion
constructor because a shared constructor could lead to multiple routines all with the
same value. Therefore, the values are replaced by function which will return a new
appropriate random value each time it is called. During creation according function
are then called every time the constructor results into a new vertex determine its
values.

Second the created structure must be randomized. In order to create constructors and
combinations of them randomly I preferred another solution choosing the number a
recursion constructor calls itself randomly each time it unfolds. Therefore, the actual
value is replaced with a function just as the other characteristics. Notice this allows
conditional calls by returning a zero out of the function.

Further recursion constructors use this technique to make randomization available for
all generated call trees.

4.3 Generator And Configuration

To analyze the impact of arbitrarily properties customizing the output of a generated
call tree it is necessary to distinguish between a generator and a configuration.

Definition 14. A call tree generator is a tuple (G,B). G is a acyclic graph of
recursion construtors and B = P1× . . .×Pk the set of all possible configurations with
properties P1 to Pk called build matrix.

Properties are basically functions which can change attached values of recursion con-
structors before they are used to generate the call tree without changing the structure
of the graph. To analyze the impact of those properties the generation is called mul-
tiple times for every possible combination of properties. This results into a matrix of
generated call trees with the same dimension as the corresponding build matrix.

This technique is extensively used within the analyzation to inspect the behavior of
varying loop sizes or sequence depths for example. Additionally, using a combination
of multiple properties makes it possible to slice the resulting matrix to see the impact
of growing depth and breadth at the same time. Notice there is an implicit property.
The seed of a random generator used during generation need to be always the same for

4 Call Tree Generation 30

determinism. On the other hand, choosing different seeds as part of the build matrix
makes it possible to improve the stability generated call trees and more accurate
analysis.

5 Analyzation 31

5 Analyzation

This section will analyze an implementation of the IP formulation using CMPL,
focused on a comparison of both versions, with and without result checkpointing.
Therefore, primitive structures are analyzed on its own and later combined together
to more complex ones. The analyzation will focus on structural argumentation and
neglect the reference to programming features or call graph relations.

5.1 Sequence Structure

As already mentioned within the preliminaries the amount of reevaluations for a sin-
gle subroutine grows linear with the number of parent context which is the number
of direct and indirect parents being argument checkpointed. Hence to utilize result
checkpointing it is necessary to first have a growing depth and second enforce the
reversal to have as much joint run modes as possible.

The first part is quite simple using a sequence of operations created by a recursion ter-
minating after calling itself d times. The resulting call tree is Td = (S, r, χ,mc,mr,m, c)
with |S| = d and all costs and memory sizes are set to ten. To be specific the step
sizes for all internal nodes is set to five which result in a fully tape size of ten because
they have exactly one child and hence two step sizes. si ∈ S denotes the subroutine
with depth i.

2 4 6 8 10 12 14
d-1

0

50

100

150

200

m
em

or
y

memory bound

2 4 6 8 10 12 14
d-1

0

500

1000

1500

co
st

cost bound

Fig. 23: Exposure of the memory and cost bound of Td for growing d.

Figure 23 shows the resulting boundaries for Td. It is worth to notice the cost upper
bound grows exponential with d while others grow linear. Also notice the memory
bound span does not grow very much because the amount of memory saved by a split
operation within a sequence is only the remaining part of all parents.

5 Analyzation 32

0
1

20

40

0.8 14

60

ad
d

it
io

n
al

co
st

120.6

80

memory bound

10

100

d-1

0.4 8

120

60.2 4
20

(a)

0
1

200

400

0.8 14

600

ad
d

it
io

n
al

co
st

120.6

800

memory bound

10

1000

d-1

0.4 8

1200

60.2 4
20

(b)

0
1

20

40

0.8 14

60

ad
d

it
io

n
al

co
st

120.6

80

memory bound

10

100

d-1

0.4 8

120

60.2 4
20

(c)

0
1

200

400

0.8 14

600
ad

d
it

io
n

al
co

st

120.6

800

memory bound

10

1000

d-1

0.4 8

1200

60.2 4
20

(d)

0
1

5

10

0.8 14

15

sa
ve

d
co

st

120.6

20

memory bound

10

25

d-1

0.4 8

30

60.2 4
20

(e)

Fig. 24: Analytics of Td for growing d and shrinking memory mound.

5 Analyzation 33

Using both versions of the IP formulation for different memory bounds chosen by
a linear interpolation yields figure 24. The memory bound is interpolated from
zero(maximum) to one(minimum) within the interval given by global split and joint
reversals. 24a shows the additional cost from a reversal computed with the standard
IP formulation and 24b the same but with the maximum additional cost possible by
a global joint reversal laid over. Figure 24c and 24d present the same respectively
with result checkpointing. The saved amount of computation cost using result check-
pointing is displayed by figure 24e.

Figure 24b shows that the problem description fails to force the standard IP to fully
split the reversal. A closer look into the reversal for a shrinking memory bound and
fixed depth, here eight, shows what happens.

y[si]
m 1 2 3 4 5 6 7 8
0.0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 1
0.4 0 0 0 0 0 0 1 0
0.6 0 0 0 0 0 1 0 0
0.8 0 0 0 0 0 1 0 1
1.0 0 0 0 0 1 0 1 1

Fig. 25: Tabular representation of schemas chosen by the standard IP with shrinking
memory bound for T8.

One argument checkpoint climbs the sequence up and frees the remaining memory
from its parents for its children thus the memory peak is at the root node holding
the argument checkpoint and its remainder before reversing. Then a point is reached
where climbing higher is not an option because the deepest subroutines reaches the
memory bound. Therefore, the IP makes a second argument checkpoint for the leaf,
what makes sense because this costs at least. The last step is the most interesting
because the root and the leaf reaches the memory bound and therefore one checkpoint
climbs up and additionally a new one is set.

Comparing the structure of raising costs for both IPs shows the IP with result check-
pointing is very much smoother. Considering a reversal where a result checkpoint
is placed under an argument checkpoint results into one call for each routine above
the argument checkpoint and two for every below. As a result, setting the argument
checkpoint one step higher results into the cost of one additional call. This is exactly

5 Analyzation 34

what happens and explains why the level of cost perfectly align to multiples of ten
until free space is squeezed out and no memory left to store result checkpoints.

However, the additional cost is relatively low even for the tightest memory bound. To
increase the level and number of joints it is necessary to relocate the memory peak to
the top subroutines. To do so the balance of prepending and remaining tape sizes is
changed. Now both are always the same but a greater remaining tape size at the top
could force the reversal to choose those because they can free up more space for their
children. Generally, four cases are distinguished shown by figure 26. Case 26a were
already probed and 26d has no effect because it just increases the overall memory
bound. 26b has the best effect shown in figure 24b. Case 26c looks promising unfor-
tunately it is not an behaves like 26a. Figure 27 uses the formula m[si, 2] = (d− i)∗5
for remaining tape sizes and delivers the best result of distributions I have researched
so far. Actually I tried to use a scalar factor k and visualized the standard IP solution
for the lower memory bound in dependency to k shown in figure 28 with a negative
effect for k > 1.

prepended remainder

(a)

prepended remainder

(b)
prepended remainder

(c)

prepended remainder

(d)

Fig. 26: Visualization of different balances of prepending and remaining tape sizes
dependent on the subroutines depth.

Unfortunately, promising concepts like growing the argument size in depth or shrink-
ing the result size yield no worthy results. Even hybrid solutions using multiple

5 Analyzation 35

1

memory bound

0.5

0

200

d-1

2 4

400

6 08

600

10

ad
d

it
io

n
al

co
st

12 14

800

1000

1200

1

memory bound

0.5

0

200

d-1

2 4

400

6 08

600

10

ad
d

it
io

n
al

co
st

12 14

800

1000

1200

Fig. 27: Analytics for shrinking remainder size with subroutines depth. On the left
the additional cost for a reversal schema obtained by the standard IP and on
the right the IP with result checkpointing.

factors for shrinking remainder and argument checkpoint size were dominated by the
examples introduced. Thus I stick to the four cases of tape size balances, shortly
summarized.

• Case 26a
The overall costs are relatively low. Result checkpointing utilization is limited
by the argument checkpoint position.

• Case 26b
Using the standard IP results into a fully joint reversal for tight memory bounds.
Result checkpointing utilizes spacing and delivers the best results possible for
memory bounds close to the minimum.

• Case 26c
The standard IP results also into a fully joint reversal but the memory space of
parents is squeezed out delivering no notable saving with result checkpointing.

• Case 26d
No important effect.

Although the analysis for now only applies to sequences this insight is the main contri-
bution the hole analysis. To close this section up the conclusion is shortly summarized.

The saved amount of computation for one result checkpoint grows linear with the
number of direct and indirect parents being argument checkpointed. In order to in-
crease this number, it is necessary to unbalance the prepending and remaining tape
size. Larger remaining tape sizes on parents with a minor depth result in a reversal

5 Analyzation 36

0
14

200

212

400

1.8
10 1.6

600

m
ax

im
u

m
co

st

1.4

800

8

d-1 k

1.2

1000

6 1

1200

4 0.8
0.62 0.4

Fig. 28: Visualization of maximum cost for a reversal obtained from the standard IP
in relation to the sequence depth and a scalar factor k managing the step
size balance.

with argument checkpoints for top level nodes and thus more potential utilization of
result checkpointing. Using this unbalance memory distribution minimizing memory
bounds let the resulting reversal converge to a global split reversal. Slightly relaxing
the memory bound results in free memory spaces during the reversal which can be
used to store result checkpoints. The number of result checkpoints which can be
stored depends on the result sizes and the amount of additional memory available.
This circumstance will always repeat itself. This means even if the memory distri-
bution is unbalanced the memory peak only relocate to deeper nodes but all parent
nodes must be able to hold the result checkpoints. As a result, the potential costs
saved with result checkpointing depends on the number of nested argument check-
points but is limited by unutilized memory during the reversal of the parent with the
closest peak to the memory bound.

5.2 Fork Structure

The previous sections introduced cases with different impact on utilization of result
checkpointing but the example of a single sequence has only rare matchings to real
world problems. To be comparable to more applications loops need to be consid-
ered but loops do not increase the depth of the tree required for nested argument
checkpoints. Thus plain loops are ignored. Instead loops of sequences are analyzed.

5 Analyzation 37

Therefore, the previous created call tree Td is extended to Td,k with k is the number
of times a new root node calls the sequence Td. Choosing the closest memory bound
and standard IP formulation yields figure 29.

0
8 8

1000

7 7

2000

6 6

3000

5 5

ad
d
it

io
n
al

co
st

k d-1

4000

4 4

5000

3 3

6000

2 2

7000

1 1

Fig. 29: Visualization of costs resulting from the standard IP applied to Td,k with
closest memory bound.

First notice the maximum amount of additional costs slightly differs because the root
node itself is not argument checkpointed. This can be bypassed by increasing the
argument sizes for all children. Second both parameters d and k result in a linear
growth. A plot of saved computation using result checkpointing is omit because both
IP formulations result into the same reversal, thus saved computation is zero and
result checkpointing is not used. This is caused by the nature of result checkpoints
hold by the parent for all of its children and those are also hold while reverseing
the most outer child of the root. As a result, the memory peak is propagated up
and the root has no memory left to store result checkpoints because it must hold all
other argument checkpoints of previous children as well. This situation is kind of simi-
lar to the previous sequence but increasing the remainder has counter intuitive effects.

For too large remainder sizes, required in order to save result checkpoints for all chil-
dren, argument checkpoints of subroutines within the sequence are dropped because
the previous released remainder is sufficient to record the entire data flow of the se-
quence. This is the same observation from sequences with permissive memory bounds.

5 Analyzation 38

To conclude result checkpointing can give very good computational savings for se-
quences but are not adaptable for loops. This is caused by the propagation of result
checkpoints to parents which will have a memory peak during reversal and loops
causes this peaks to be closer to the actual memory bound leaving no space for result
checkpoints which need to be hold by all parents.

6 Included Software 39

6 Included Software

Beside the written part this thesis includes a rich set of software I developed. Every
module of the software is split into single parts. Dependencies between different mod-
ules are preserved by a build system enforcing reevaluation if a dependency changed.
In fact, this thesis is a module of the project itself dependent on other modules like
the generator implementation. For example, some of the figures within this thesis
are generated using the generator and a change of the generator or its configuration
would lead to an update of all dependent figures.

To accomplish this the entire project is designed with Cmake, a cross-platform tool
to generate build systems. Further self-developed software is packed into applications
offering a command line interface to either work with them by hand or embed them
into Cmake. Nevertheless, applications are mostly interfaces only and relevant func-
tionality is built into multiple shared libraries.

Each library comes with code documentation and a set of tests. The entire stack of
libraries consists of fifty pages of code documentation and over seventy test cases for
critical parts of the software. The code documentation itself is part of the toolchain,
thus if you integrate the generated code documentation into your IDE you can write
on it and straightforwardly use it within your IDE help suite. However, this section
will focus more on applications rather than library functionality. If you want to read
more about the libraries refer to the developer guide or code documentation on the
CD.

The importer initializes the database used internally to share call tree dependent data
between apps. Therefore, every application includes a common interface to connect
to databased by command line or reading the configuration from a created cache file.
Beside database initialization the importer offers an extensible import routine to load
call trees from arbitrary file formats into the database. The standard importer comes
with the support of a specific csv format.

The application generate is responsible to generate problem descriptions, call trees
and seeds. First seeds should be generated used later to extend the build matrix. To
generate call trees the application accepts a configuration file with a specified build
matrix and a path to a javascript file. This javascript file is then called within an
engine provided by the application for every possible configuration and the resulting
call trees are uploaded into the database. The engine has an interface for c interop-
erability called packages and the software comes with two predefined, ccalltree and
crandom. ccalltree is a low level interface to create a call tree within the surrounding

6 Included Software 40

application. crandom extends the random functions that comes with javascript to a
set of more reliable distributions. Furthermore, crandom guarantees to be correctly
seeded to the corresponding configuration seed value. ccalltree is very low level and
generally only consists of push and pop operations. In order to work properly with
the generator then engine includes a javascript library named calljs. This libary im-
plements a generator as described within this thesis and maps the created call tree to
the c interface. Furthermore, the interface is exchangable and calljs can also print the
resulting call tree, contracted or uncontracted, into a latex file. This is very handy
for test or debugging purposes. To use the empowered javascript engine without the
need to upload the generated call tree into the database the engine can be started
seperately using the application jsconsole.

Generated call tree can then be solved using the solve application. This application
uses heuristics and cmpl to solve problem descriptions loaded from the database. To
do so it saves the problem description into da file and then starts cmpl for every IP
formulation passed. Afterwards the results are uploaded back into the database. The
software includes two cmpl implementations for the standard IP formulation and the
extended formulation with result checkpointing.

For analyzation the application analyze is used. This application loads all call trees
and arrange them into the build matrix they were created from. In order to save the
entire call tree within each cell the application prepares a set of statistics which can
be extended by an interface. If a problem descriptions and solutions exist for a call
tree, its corresponding cell is extended by a matrix with two dimensions. One for the
used solver and another for the chosen memory bound with cells containing statistics
of the solving step. The entire set of matrices can then be either stored into a matlab
file or the application itself starts matlab as an interactive shell. Additionally, the
software comes with a light set of matlab functions called callmat containing useful
functions to plot relevant data.

The entire software stack uses multiple abstraction layers making it easy to hook into
every part wihtout the need of a deep understanding of every single class. More-
over, the automated test suite and toolchain will give instant feedback for every
customization and preserved dependencies will automatically keep the state of each
module consistent. Regardless the software is written with this thesis in mind thus
applications may be a bit tailored but this is the minor part of the software and major
components are shared by libraries making it simple to implement own applications.
Actually there is a library to fastly implement custom applications called runtime.

This section gives only a short introduction but further information an explanation

6 Included Software 41

can be obtained by the user/developer guide and code documentation on the attached
CD.

7 Conclusion 42

7 Conclusion

The Call Tree Reversal Problem, short CTR, is a special case of the DAG reversal
problem applied to the call tree structure and proven to be NP-complete[3] with re-
spect to the DAG reversal problem. This thesis introduces a formulation of CTR
using integer programs. The result is more customizable then custom heuristics and
delivers a good inside view into the different states during a reversal. Thus the
formulation not only delivers an alternative problem description further it explains
dependencies of structural properties of call trees and eases a deeper understanding
of call tree reversals. Additionally, pitfalls are elaborated and solved using result
checkpointing. Both developed versions are analyzed with respect to expectations
within elaboration resulting in a continuous transition from theoretical composition
to practice. Further an implementation of the IP formulation for CTR were analyzed
showing fundamental characteristics of result checkpointing. Unfortunately using re-
sult checkpointing slows the solver down to an unacceptable performance. However,
result checkpointing shows promising results under certain circumstances but suffer
from memory peaks of parent nodes.

The analyzation focus on very primitive data structures and shows dependencies be-
tween different characteristic and their influence on result checkpoint utilization. This
yields results which can be further adopted to a wide range of more complex struc-
tures to build more in depth researches or inspect application specific structures and
works fine with the call tree construction. The call tree constructions showed a math-
ematical concept of building arbitrary call trees using a unified structure which can
be repeatedly nested into each other. Due to the primitive example within analyza-
tion this was not extensively used but makes it easier to integrate the used structures
into custom abstractions and analyze the impact with respect to the prepared char-
acterization. Additionally, call tree generation comes with a stack of techniques used
to adopt real world applications and map existing program characteristics like call
graphs or low and high level programming features.

The included toolchain makes it fluent to customize the research in this thesis to
custom needs at any level. Interleaving the set of provided tools result in a fully au-
tomated system preserving dependencies and giving instant feedback for any change.
The usage of four different languages(c++, javascript, sql, matlab) and extensive use
of abstraction layers makes it hard to understand the entire stack in depth. To over-
come this the project includes a vagrant file to setup a fully feature enabled virtual
machine, except commercial licensed software, able to build the entire software stack
including this thesis and a user plus developer guide. On the other hand, the mix of
several languages and tools makes it much easier to focus on the part necessary using

7 Conclusion 43

a well suited language for the focused problem.

8 Outlook 44

8 Outlook

This section lists topics I discovered being out of scope for this thesis and gives
impulses for future related work.

Call Tree Generation

Grammars

One common approach to randomly generate structured objects is the usage of a
grammar definition. I neglect this option because I wanted to have a more applica-
tion related representation but this representation could be used to be adapted by
grammar. This would open a wide range of theoretic- and practically resources.

Extraction

Every construction within this thesis introduces an own configuration based on ob-
servations and analyzation of real world applications or tools used to create those.
Another approach could be to take existing structures and algorithmic extract a con-
struction configuration. Those structure could then be used and especially mixed
up with user defined abstractions to create more practical related data or analyze
application specific circumstances.

Minors

The developed construction structure with contraction operation comes with minors
in mind. Minors can be used to find and express graph characterizations but the
thesis does not utilize this in analyzation. Thus it would be interesting how avail-
able characterizations like claw-free graphs influences out coming results or how new
application specific characterizations could be defined to guarantee desired behavior.
For example, structures worked out in this thesis could guarantee a good utilization
of result checkpointing or at least used to help the IP to find those faster.

IP Formulation

Meantime Result Checkpointing

The actual implementation always assumes to store all result checkpoints from the
beginning but the analysis showed for a growing number of joints the memory peak
moves up building a bottleneck. Therefore, result checkpoints could be recorded after
bottlenecks are passed and maybe released before the according subroutine is reached.

8 Outlook 45

This would enable result checkpointing for subtrees and maybe counter the problem
of loops.

Hybrid Solutions

Both IP formulations are strictly separated within this thesis but a mixed solution
could try to find a balance between performance and result checkpointing utilization.
Additionally, heuristics could be used internally to obtain a basic solution.

Solver Parameter

This thesis heavily focuses on the outcome and utilization of result checkpointing but
neglects performance improvements using specific solvers and parameters. A field of
interest might be the usage of analyzation to choose convenient parameters enhancing
the result and performance.

Just In Time Generation

The IP implementation is currently static but it may be suitable to use characteristics
and analyzations obtained by heuristics, matlab and so forth to generate an adapting
problem definition. For example, result checkpointing could be enabled only for
subtrees with predefined properties or the graph could transform into a simpler one.

Analyzes

Random Inspection

This thesis uses a conceptual approach analyzing structures. However, random struc-
tures could be created and tested against properties of interest. Passing call trees
could then be used to take statistical inference.

8 Outlook 46

References

[1] Uwe Naumann Johannes Lotz, Sumit Mitra, A 0,1-programming approach to the
call tree reversal problem, Ph.D. thesis, 2016.

[2] Uwe Naumann, The art of differentiating computer programs: An introduction to
algorithmic differentiation, Software, Environments, and Tools, SIAM.

[3] , Call tree reversal is np-complete, Tech. Report AIB-2007-18, Department
of Computer Science, RWTH Aachen, December 2007.

